

Grips for Universal Testing Machines tension, compression, bending, peel, ... 2445

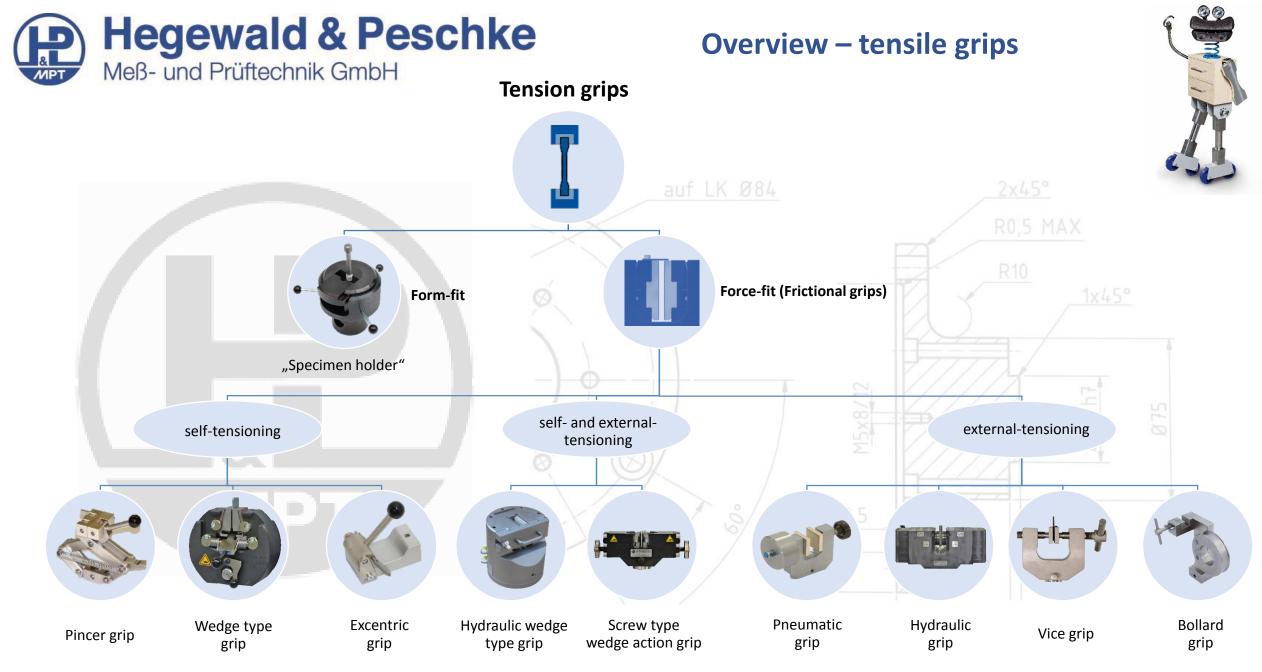
Overview – Selection criterias

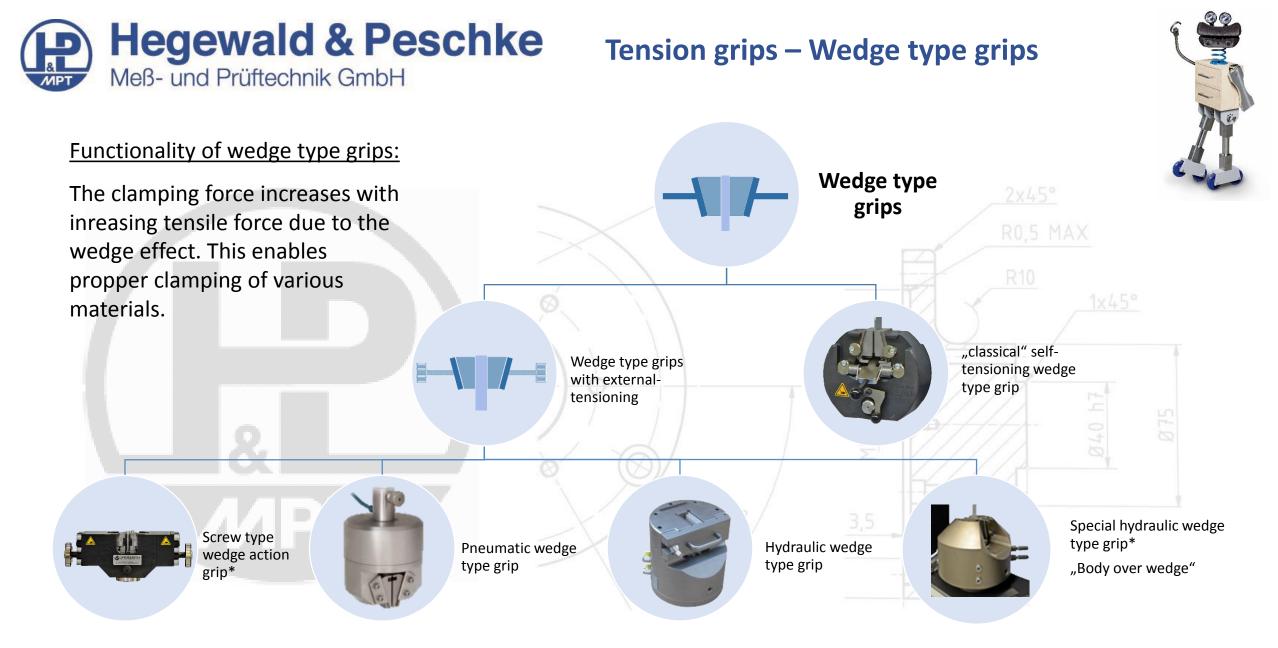
- Clamping/Fixation of specimen
- Breakage at jaws
- Axiality
- Material
- Specimen shape
- Maximum force and strength/hardness
- Price
- Maintenance requirements

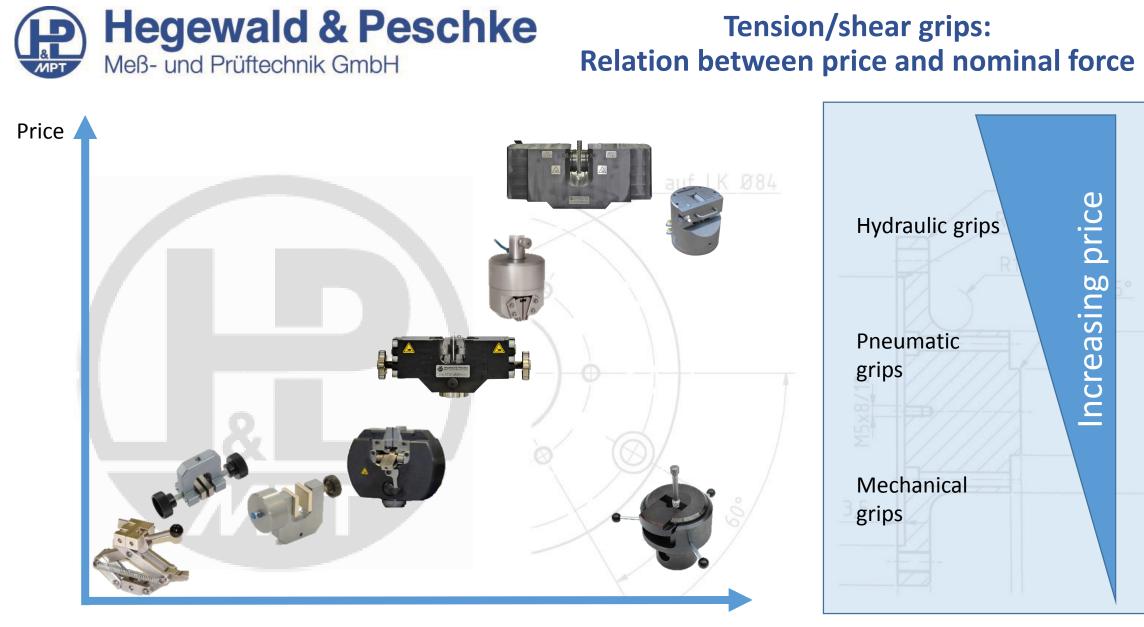
- Fixed or tiltable (plane compression
 - parallelism of the
 - specimen)
 - Specimen Dimensions
 - Required hardness
 - Maximum force and
 - strength/hardness
 - Price

for

grips



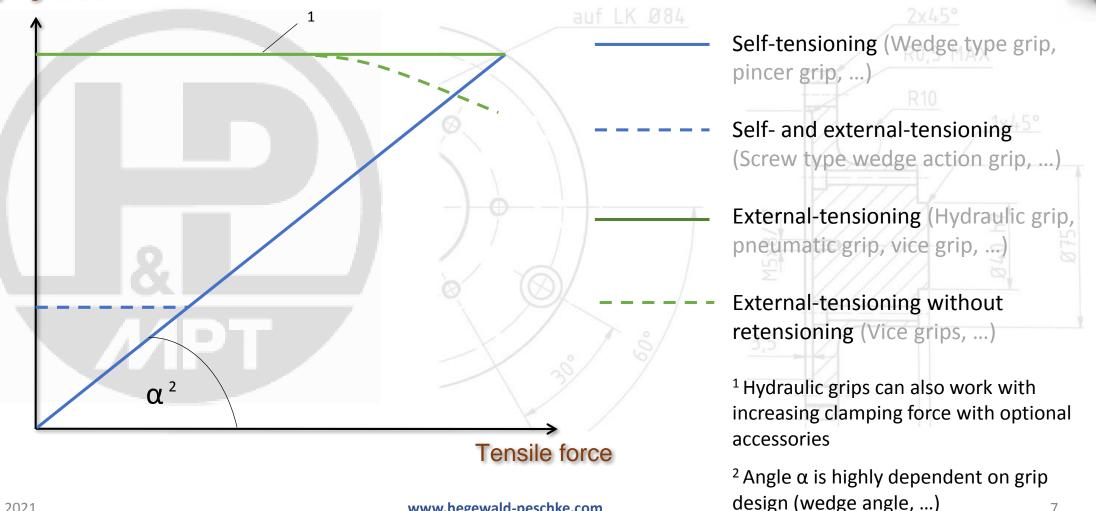

- 3 point/4 point bending
- Supports and fin: fixed, rotating, tiltable
- Dimensions of Supports
- Material


bending

- Maximum force and strength/hardness
- Accuracy of displacement measurement
- Price

* External clamping of the specimens happens parallel, avoiding negative compression forces, which could damage the specimens.

Nominal load



Tension grips: Relation between clamping force and tensile force

7

Clamping force

Mechanical grips: Applications, advantages and disadvanteges

	Increasing Price			2
Vice grip	Pincer grip	Wedge type grip	Screw type wedge action grip	
External-tensioning	Self-tensioning		External-tensioning + Self-tensioning	
+ Symmetrical and Asymmetrical	- Only symmetrical Clamping possible	- Only symmetrical Clamping possible	+ Symmetrical and Asymmetrical	Î
+ Light	+ Light	- Heavy	- Heavy	
+ Adjustable clamping force (It is difficult to reach reproduceable clamping forces)	 Clamping force and pre clamping force cannot be adjusted 	 Clamping force and pre clamping force cannot be adjusted 	+ Adjustable clamping force (Reproduceable clamping forces can be reached with a torque wrench)	
- For small forces		+ Up to high forces	+ Up to high forces	
		- Spring back after brittle fracture	+ Frictional fixation after fracture	
 Jaws needs be adjusted dependent of specimen diameter/thickness 	 No need to adjust jaws dependent of specimen diameter/thickness 	 No need to adjust jaws dependent of specimen diameter/thickness 	 No need to adjust jaws dependent of specimen diameter/thickness 	
• Clamping force decreases during testing	 Clamping force increases during testing 	 Clamping force increases during testing 	 Clamping force increases during testing 	
 for Thermoplastic, Duroplast, foils, up to 20 kN 	 for elastomers, plastics, textiles up to 20 kN 	- for metals - up to 600 kN	 for metals up to 250 kN 	

Screw type wedge action grip: Advantages and Characteristics

Non-synchronized Screw type wedge action grips

Synchronized Screw type wedge action grips

+ During clamping, the clamping jaws close horizontally, thus preventing damaging compression of the tensile specimens.

+ During testing clamping force increases with the tensile load due to the wedge effect, which allows safe clamping of very different materials.

+ Minimization of undesired stick-slip effects on the clamping wedge due to the high-pressure resistant polymer coating of the sliding surfaces

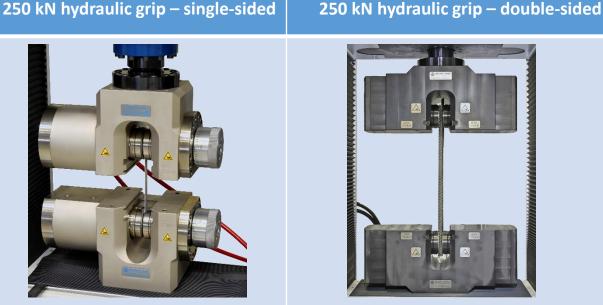
+ The jaw inserts can be changed easily and without tools.

+ Suitable for use in temperature chambers

+ Both symmetrical and asymmetrical clamping possible

+ The jaws can be adjusted independently of each other, allowing	+ The grip can clamp specimens in both symmetrical and asymmetrical mode.
asymmetrical samples to be tested.	When working in asynchronous mode, the set offset is kept constant.
→ Asynchronous clamping	→ Either synchronous or asynchronous clamping is possible

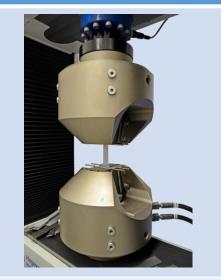
Pneumatic and hydraulic grips: Advantages and disadvantages



Pneumatic grips	Hydraulic grips	
+ clamping force can be adjusted precisely and hold constantly + single-sided and double-sided versions available + pneumatical/hydraulic wedge type grips for usage in temperature chambers + specimen is fixed and immobile, even after fracture + broad variety of clamping jaws		
+ compressed air/compressors are much cheaper than hydraulic aggregates	- high costs for grip, hydraulic aggregate and maintenance	
+ light and small in comparison to hydraulic grips	- grips are very heavy and thus difficult to dismount $ ightarrow$ + often direct adaptation of other grips possible	
+ clean medium (air) without environmental hazards	- Oil necessary (Environmental issues and high service efforts)	
- limited clamping forces	+ Maximum clamping force	
 up to 20 kN (in rare cases up to 50kN) suitable for fibres, foils, paper, textiles, plastics, sheets, wires 	 for high load ranges and for complex clamping tasks suitable for metals, CFRP/GFRC-materials, technical textiles, hard specimens 	

Selection of hydraulic grips

- suitable for centric and acentric clamping
- for welded and glued specimens - Jaws needs be adjusted dependent of specimen diameter/thickness



- absolutely centrical clamping
- for symmetrical specimens
- for materials with low tolerance against lateral forces (composites)
- No need to adjust jaws dependent specimen diameter/thickness

250 kN hydraulic wedge

type grip

- compressive forces arise during clamping
- less cost intensive
- clamping force increases with increasing tensile force • No need to adjust jaws dependent of specimen diameter/thickness

type grip – body over wedge

- "Body over Wedge" \rightarrow jaws close parallel due to movement of grip body \rightarrow no compressive forces during clamping
- pre clamping force can be adjusted precisely
- No need to adjust jaws dependent of specimen diameter/thickness

08.11.2021

www.hegewald-peschke.com

Selection of pneumatic grips

3.5 kN Single-sided pneumatic grip	20 kN Single-sided pneumatic grip	2.4 kN Double-sided pneumatic grip	10 kN /20 kN pneumatic wedge type grip
 centric and acentric clamping possible direct-acting cylinder 	 centric and acentric clamping possible special design: indirect power transmission with cylinder mounted in opposite direction 	 only for centric clamping compact design 	 suitable for usage in temperature chamber: -70 to 280°C incl. Teflon seal variable length of the extension rods

Clamping jaws for flat specimens and sheets

Application Design Description - Flat jaws with saw teeth - metals - Material: tool steel (56⁺² HRC) - wood - plastics - fibre-reinforces plastics - UTM up to 1300 N/mm² - for fracture sensitive - flat jaws with ceramic inlay materials - for metal foil, sheets, wires, ... - for fracture sensitive - flat jaws with diamond coating (Graining D91 F0,2) materials - steel sheets - for non ferrous metals - UTM up to 1900 N/mm² - flat jaws with 90° pyramid profile - Material: tool steel (64⁻² HRC) - different teeth sizes: ~~~~~

Clamping jaws for round specimens, pipes and others

Application	Design	Description	
round specimens, bars,			2x45°
- steels - UTM up to 1300 N/mm ²		- prism jaws with different saw tooth grids - material: tool steel (56 ⁺² HRC)	
- UTM up to 1900 N/mm ²		 prism jaws with 90° pyramid tooth, optionally with different profile depths/grids material: tool steel (64⁻² HRC) 	
sheets and foils			B40 h7
 geo textiles textiles plastics fabrics 		- flat jaws with PU-coating (Vulkollan®)	
 fabrics textiles foils		- waved profile	

Mechanical Clamping system Specimen holder for form-fit clamping

Specimen holder for shouldered-end/threaded- end specimens and screws		n plates Insertion plates crews for threaded-end specimens	Insertion plates for shouldere-end specimens	Insertion plates for wedge loading
Clamping of tensile specimens that cannot be gripped directly with clamping jaws due to their size, geometry or composition				
				40 hi Ø75
Connector to R60/30	Connector M64x4 Connector AS60 to wedge type g		Connector to hydraulic grip	

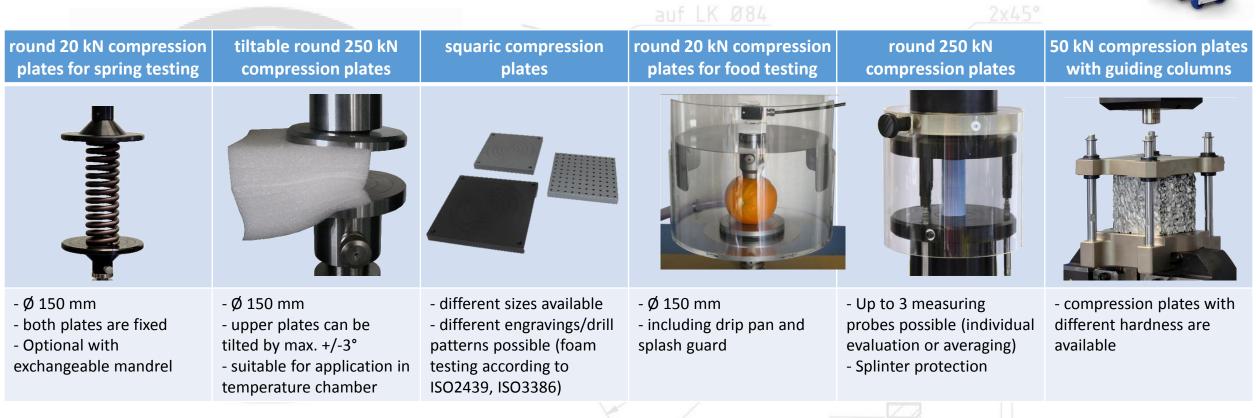
Bending jigs for 3-point, 4-point and folding tests

Application

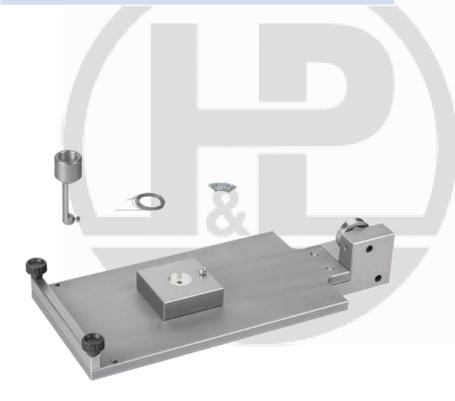
Determination of the elastic properties and maximum bending strength of brittle composites and ceramics, metals, wooden plates, rigid plastics, analysis of welded sheets.

Selection criteria

- Supports fixed, rotating or tilting (to avoid transverse loads on non-symmetrical specimens) with radius at the bending edges
- Optionally equipped with displacement probes for displacement measurement on bending samples
- 4-point: Force is applied via 2 bending fins symmetrically aligned to the supports. The bending moments are constant between the bending fins.


Supports rotatable, tiltable and fixable

Applications of compression plates



Peel test devices Determination of friction coefficient

Application

Determination peel forces and of the coefficient of sliding friction on films and textiles, adhesion test - Different trigger angles, e.g. 45°, 90° and 180



T-groove plates

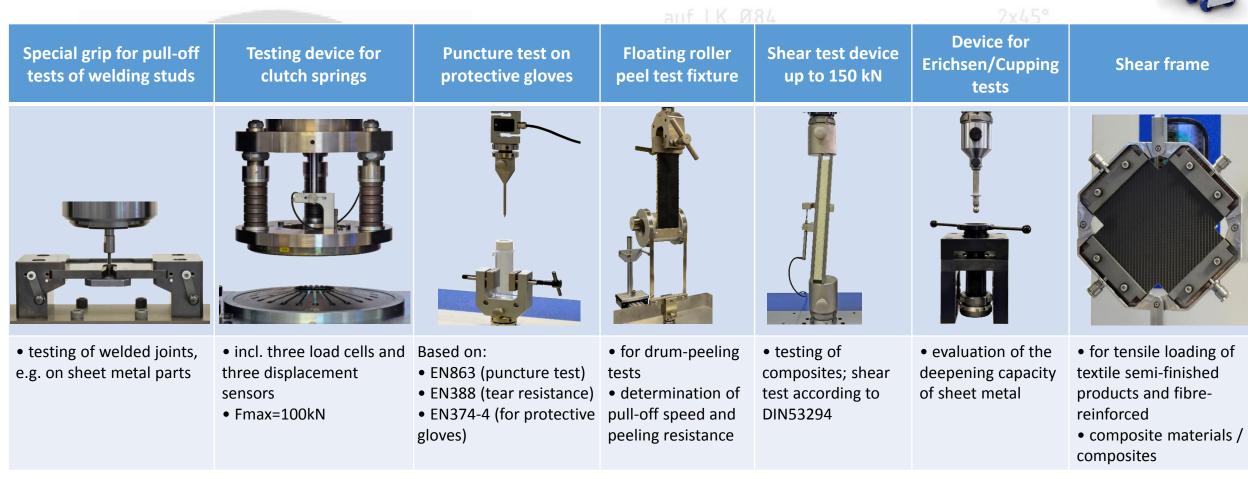
T-groove plates

- for component testing
- adaption of various tools possible
- different sizes, different T-groove geometries and orientation
- Optionally with air cushion pallet and parking table for moving heavy fixtures in and out of the test chamber, making it easier to switch between different types of tests (see right)

Special grips / Bollard grips

Bollard grip / grips with force reduction curve

- + Deflection of the wire/rope for indirect clamping
- + Prevention of breakage of the clamping jaw (clamping crack)
- + Clamping with screw, pneumatic, hydraulic, etc. possible
- + Cost-effective
- Only possible for small diameters (up to 4 mm)
- A long sample is required
- Big difference between machine stroke and specimen elongation


771 E

Selection of special test grips

